Math, asked by mikkyrani952, 1 month ago

find the value in this question​

Attachments:

Answers

Answered by mbakshi37
0

Answer:

1

Step-by-step explanation:

1+ xPower (a-b) = (x Power a + x Power b)/x power b

1+ xPower (b-a) = (x Power a + x Power b)/x power a

sum= (x Power a + x Power b)/(x Power a + x Power b)=1

Answered by Salmonpanna2022
2

Step-by-step explanation:

Prove \:  that: \frac{1}{1 +  {x}^{a - b} }  +  \frac{1}{1 +  {x}^{b - a} }  = 1 \\  \\

We have,

 \frac{1}{1 +  {x}^{a - b} }  +  \frac{1}{1 +  {x}^{b - a} }  = 1 \\  \\

⟹ \frac{1}{1 +  {x}^{a} . {x}^{ - b}  } +  \frac{1}{1 +  {x}^{b} . {x}^{ - a} }   = 1 \\  \\

⟹ \frac{1}{1 +  \frac{ {x}^{a} }{ {x}^{b} } }  +  \frac{1}{1 +  \frac{ {x}^{b} }{ {x}^{a} } }  = 1 \\  \\

⟹ \frac{ {x}^{b} }{ {x}^{ b}  +  {x}^{a} }  +  \frac{ {x}^{a} }{ {x}^{a}  +  {x}^{b} }  = 1 \\  \\

⟹ \frac{ {x}^{b} +  {x}^{a}  }{ {x}^{b} +  {x}^{a}  }  = 1 \\  \\

⟹1 = 1 \\  \\

LHS = RHS

Hence, proved:

Similar questions