Math, asked by rcbfan0, 1 year ago

find the value lt x=x (1/x²+ 2/x²+3/x²....x/x²)​

Answers

Answered by sivaprasath
0

Answer:

x = 1

x(\frac{1}{x^2} + \frac{2}{x^2} + \frac{3}{x^2} +...+\frac{x}{x^2} ) = x = 1

Step-by-step explanation:

Given :

To find the value of x,

if x = x(\frac{1}{x^2} + \frac{2}{x^2} + \frac{3}{x^2} +...+\frac{x}{x^2} )

Solution :

x = x(\frac{1}{x^2} + \frac{2}{x^2} + \frac{3}{x^2} +...+\frac{x}{x^2} )

Dividing both the sides by x ,

we get,

x(\frac{1}{x}) = (\frac{1}{x})x(\frac{1}{x^2} + \frac{2}{x^2} + \frac{3}{x^2} +...+\frac{x}{x^2} )

1 = \frac{1}{x^2} + \frac{2}{x^2} + \frac{3}{x^2} +...+\frac{x}{x^2}

As, all the terms have same denominator (no need to coss-multiply/find LCM)

1 = \frac{1+2+3+...+x}{x^2}

We know that,

1 + 2 + 3 + 4+ ... + n = \frac{n(n+1)}{2}

Hence,

1 + 2 + 3 + 4+ ... + x = \frac{x(x+1)}{2}

So,

1 = \frac{\frac{x(x+1)}{2}}{x^2} = \frac{x(x+1)}{2x^2}=\frac{x+1}{2x}

1 = \frac{x+1}{2x}

⇒ 2x = x + 1

⇒ 2x - x = 1

⇒ x = 1

So,

x(\frac{1}{x^2} + \frac{2}{x^2} + \frac{3}{x^2} +...+\frac{x}{x^2} ) = x = 1

Similar questions