Math, asked by PragyaTbia, 1 year ago

Find the value of (0.9)⁶, correct upto four places of decimals.

Answers

Answered by Nitrome
1
The value is 0.531441
But according to question the answer is 0.5314
Answered by mysticd
3
Solution :

**************************************
By Binomial Theorem :

\rm \displaystyle \left ( x + a )^n =<br /><br />^nC_{0}x^{n}+^nC_{1}x^{n-1}a^{r}+..+<br /><br />^nC_{r}x^{n-r}a^{r}+...+^nC_{n}a^{n} \right )

**********************************

Here ,

$ ( 0.9 )^6 $

= $ ( 1 - 0.1 )^6 $

= \rm \displaystyle{ $ ( 1 - 0.1 )^6 $ =<br /><br />$^6C_{0}x^{6}+^6C_{1}1^{5-1}(0.1)^{1}-^6C_{2}(0.1)^2+^{6}C_{3}(0.1)^{3}-^{6}C_{4}(0.1)^4+^{6}C_{5}(0.1)^{5}+^{6}C_{6}(0.1)^{6}<br />$ }

= \rm \textsf {$ 1 - 6×(0.1) + 15 × (0.1)^2-20(0.1)^3+15(0.1)^4-6(0.1)^5-(0.1)^6 $}

= 1-0.6+0.15-0.02+0.0015-0.00006+0.000001

= 1.151501 - 0.620060

= 0.531441

≈ 0.5314

••••
Similar questions