Math, asked by PragyaTbia, 1 year ago

Find the value of:
1 × 1! + 2 × 2! + 3 × 3! + ...+ n × n!

Answers

Answered by amitnrw
1

Answer:

1 × 1! + 2 × 2! + 3 × 3! + ...+ n × n!  =  (n + 1)!  - 1

Step-by-step explanation:

1 × 1! + 2 × 2! + 3 × 3! + ...+ n × n!

∑ n * n!

= ∑ (n+1 -1 ) * n!

= ∑ (n + 1) n! - n!

= ∑ (n + 1) ! - n!

=( 2! - 1! )+ (3! - 2!) +.............................+(n! - (n-1)!) + (n+1)! - n!)

= - 1 +  (n + 1)!

= (n + 1)!  - 1

1 × 1! + 2 × 2! + 3 × 3! + ...+ n × n!  =  (n + 1)!  - 1

Answered by ujalasingh385
0

Answer:

1 × 1! + 2 × 2! + 3 × 3! + ...+ n × n!  =  (n + 1)!  - 1

Step-by-step explanation:

In this question

we need to find the

1 × 1! + 2 × 2! + 3 × 3! + ...+ n × n!

Therefore, According to the question

∑ n ×  n!

= ∑ (n+1 -1 ) × n!

= ∑ (n + 1) n! - n!

= ∑ (n + 1) ! - n!

=( 2! - 1! )+ (3! - 2!) +.............................+(n! - (n-1)!) + (n+1)! - n!)

2! and -2! cancels similarly all the terms cancels out except

= - 1 +  (n + 1)!

= (n + 1)!  - 1

1 × 1! + 2 × 2! + 3 × 3! + ...+ n × n!  =  (n + 1)!  - 1

Similar questions