Math, asked by ayushivishwakarma47, 7 months ago

Find the value of (1/2)4÷(1/3)4+(1/2)3​

Answers

Answered by Anonymous
3

Correct Question :

›»› Find the value of (1/2)⁴ ÷ (1/3)⁴ + (1/2)³

Answer :

›»› The value is 5.1875

Given :

  • (1/2)⁴ ÷ (1/3)⁴ + (1/2)³

To Find :

  • The value (1/2)⁴ ÷ (1/3)⁴ + (1/2)³ = ?

Solution :

\tt{:\implies {\bigg(\dfrac{1}{2} \bigg)}^{4} \div {\bigg( \dfrac{1}{3}  \bigg)}^{4} + {\bigg( \dfrac{1}{2}  \bigg)}^{3}}

\tt{:\implies  \dfrac{{1}^{4}}{{2}^{4}}  }\div {{\bigg( \dfrac{1}{3}  \bigg)}^{4} + {\bigg( \dfrac{1}{2}  \bigg)}^{3}}

\tt{:\implies  \dfrac{1}{{2}^{4}}  }\div {{\bigg( \dfrac{1}{3}  \bigg)}^{4} + {\bigg( \dfrac{1}{2}  \bigg)}^{3}}

\tt{:\implies  \dfrac{1}{16}  }\div {{\bigg( \dfrac{1}{3}  \bigg)}^{4} + {\bigg( \dfrac{1}{2}  \bigg)}^{3}}

\tt{: \implies \dfrac{1}{16} \div  \dfrac{ {1}^{4} }{ {3}^{4} }  + {\bigg( \dfrac{1}{2}  \bigg)}^{3}}

\tt{: \implies \dfrac{1}{16} \div  \dfrac{1}{ {3}^{4} }  + {\bigg( \dfrac{1}{2}  \bigg)}^{3}}

\tt{: \implies \dfrac{1}{16} \div  \dfrac{1}{81}  + {\bigg( \dfrac{1}{2}  \bigg)}^{3}}

\tt{: \implies \dfrac{1}{16} \div  \dfrac{1}{81}  + {\bigg( \dfrac{1}{2}  \bigg)}^{3}}

\tt{: \implies \dfrac{1}{16} \times  \dfrac{81}{1}  + {\bigg( \dfrac{1}{2}  \bigg)}^{3}}

\tt{: \implies \dfrac{81}{16}+ {\bigg( \dfrac{1}{2}  \bigg)}^{3}}

\tt{: \implies \dfrac{81}{16} + \dfrac{ {1}^{3} }{ {2}^{3} } }

\tt{: \implies \dfrac{81}{16} + \dfrac{1}{ {2}^{3} } }

\tt{: \implies \dfrac{81}{16} + \dfrac{1}{8} }

\tt{: \implies \dfrac{81}{16} + \dfrac{1 \times 2}{8 \times 2} }

\tt{: \implies \dfrac{81}{16} + \dfrac{2}{16} }

\tt{: \implies \dfrac{81}{16} + \dfrac{2}{16} }

\tt{: \implies  \dfrac{81 + 2}{16} }

\tt{: \implies \dfrac{83}{16}}

\frak{: \implies \underline{ \boxed{ \pink{ \frak{5.1875}}}}}

Hence, the value is 5.187.

Similar questions