find the value of 1\√3+√4+1\√4+√5+1\√5+√6+1\√6+√7+1\√7+√8+1\√8+√9
Answers
Answer:
Step-by-step explanation:
Prove that (1 / √4 + √5) + (1 / √5 + √6) + (1 / √6 + √7) + (1 / √7 + √8) + (1 / √8 + √9) = 1
Class-IX Math
Sol:
1 / (√4 + √5)
= [1 / (√4 + √5)] x [(√4 - √5)/(√4 - √5)]
= (√4 - √5) / (√4)2 - (√5)2
= (√4 - √5) / 4 - 5
= (√4 - √5) / (-1)
= (√5 - √4)
(1 / √5 + √6)
= [1 / (√5 + √6)] x [(√5 - √6)/(√5 - √6)]
= (√5 - √6) / (√5)2 - (√6)2
= (√5 - √6) / 5 - 6
= (√5 - √6) / (-1)
= (√6 - √5)
Similarly,
(1 / √6 + √7) = (√7 - √6)
(1 / √7 + √8) = (√8 - √7)
(1 / √8 + √9) = (√9 - √8)
(1 / √4 + √5) + (1 / √5 + √6) + (1 / √6 + √7) + (1 / √7 + √8) + (1 / √8 + √9)
= (√5 - √4) + (√6 - √5) + (√7 - √6) + (√8 - √7) + (√9 - √8)
= 3 - 2
= 1
hope this is helpful to you
Priyanshu
Click to let others know, how helpful is it
4.0
10 votes
THANKS
30
Report
Ask your
Tushar
hope it will help u.....
must mark me as BRAINEST vanshika.......^_^