Math, asked by bhargavialuri1, 7 months ago

Find the value of 1/3 log 27- 2 log 1/3?​

Answers

Answered by Manmohan04
0

Given,

\[\frac{1}{3}\log 27 - 2\log \frac{1}{3}\]

Solution,

\[ = \frac{1}{3}\log 27 - 2\log \frac{1}{3}\]

\[ = \log {3^{\frac{3}{3}}} - \log {\left( {\frac{1}{3}} \right)^2}\]

\[ = \log 3 - \log \frac{1}{9}\]

\[ = \log 3 - \log {9^{ - 1}}\]

\[ = \log 3 + \log 9\]

\[ = \log \left( {3 \times 9} \right)\]

\[\begin{array}{l} = \log 27\\ = 3\log 3\end{array}\]

Hence the value is \[3\log 3\]

Similar questions