Math, asked by shathisjanthi3275, 10 months ago

find the value of (1).49 POWER 1/2 (2). 243 power 2/5 (3). 9 POWER-3/2​

Answers

Answered by mantu9000
1

1. 49^{\dfrac{1}{2} }

We have to find, the value of 49^{\dfrac{1}{2} } .

Solution:

49^{\dfrac{1}{2} }

= (7^2)^{\dfrac{1}{2} }

= 7^{2.\dfrac{1}{2} } [ ∵ (a^{m} )^n=a^{mn}]

= 7

Thus, the value of "49^{\dfrac{1}{2} } is 7."

2. 243^{\dfrac{2}{5} }

We have to find, the value of 243^{\dfrac{2}{5} }.

Solution:

243^{\dfrac{2}{5} }

= (3^5)^{\dfrac{2}{5} }

= 3^{5.\dfrac{2}{5} } [ ∵ (a^{m} )^n=a^{mn}]

= 3^{2}

= 9

Thus, the value of "243^{\dfrac{2}{5} } is 9."

3. 9^{\dfrac{-3}{2} }

We have to find, the value of 9^{\dfrac{-3}{2} }.

Solution:

9^{\dfrac{-3}{2} }

= (3^2)^{\dfrac{-3}{2} }

= 3^{2.\dfrac{-3}{2} } [ ∵ (a^{m} )^n=a^{mn}]

= 3^{-3}

= \dfrac{1}{3^3}

= \dfrac{1}{27}

Thus, the value of "9^{\dfrac{-3}{2} } is \dfrac{1}{27}."

Answered by mad210220
1

1.Given:

49 POWER 1/2

Solution:

49^{\frac{1}{2} }= (7^{2}) ^{\frac{1}{2} }                [∵7^{2} = 49]

     = 7                     [∵(a^{m}) ^{n} =a^{mn}]

49 POWER 1/2 = 7

2. Given:

243 POWER 2/5

Solution:

243^{\frac{2}{5} } = (3^{5}) ^{\frac{2}{5} }            [∵ 3^{5}=243]

       = 3^{2}                 [∵(a^{m}) ^{n} = a^{mn}]

       = 9

243 POWER 2/5 = 9

3.Given:

9 POWER -3/2

Solution:

9^{\frac{-3}{2} } = (3^{2}) ^{\frac{-3}{2} }           [∵3^{2} = 9]

      = 3^{-3}                 [∵(a^{m}) ^{n} = a^{mn}]

      = \frac{1}{3^{3} }                   [∵a^{-m} = \frac{1}{a^{m} } ]

      = \frac{1}{27}

∴9 POWER -3/2= 1/27

Similar questions