find the value of-
[-1/4a+1/2b-1]^2
Answers
Step-by-step explanation:
Answer:
\begin{gathered}Expansion\:of \:(\frac{1}{4a}-\frac{1}{2b}+1)^{2}\\=\frac{1}{16a^{2}}+\frac{1}{4b^{2}}+1\\-\frac{1}{4ab}-\frac{1}{b}+\frac{1}{2a}\end{gathered}
Expansionof(
4a
1
−
2b
1
+1)
2
=
16a
2
1
+
4b
2
1
+1
−
4ab
1
−
b
1
+
2a
1
Step-by-step explanation:
Expansion\:of \:(\frac{1}{4a}-\frac{1}{2b}+1)^{2}Expansionof(
4a
1
−
2b
1
+1)
2
/* we know the algebraic identity:
$$\begin{gathered}\boxed {(x+y+z)^{2}\\=x^{2}+y^{2}+z^{2}+2xy+2yz+2zx}\end{gathered}$$ *\
=$$[(\frac{1}{4a}+(-\frac{1}{2b})+1]^{2}$$
=$$\begin{gathered}(\frac{1}{4a})^{2}+(\frac{-1}{2b})^{2}+1^{2}\\+2\times \frac{1}{4a}\times \frac{-1}{2b}+2\times \frac{-1}{2b}\times 1+2\times 1 \times \frac{1}{4a}\end{gathered}$$
=$$\begin{gathered}\frac{1}{16a^{2}}+\frac{1}{4b^{2}}+1\\-\frac{1}{4ab}-\frac{1}{b}+\frac{1}{2a}\end{gathered}$$