Math, asked by choudharyanjali0104, 3 months ago

Find the value of 1/5-4​

Answers

Answered by sweetcandy42
0

Answer:

here's ur answer

Step-by-step explanation:

EXPLANATION.

\sf \implies \lim_{\Delta x \to 0} \dfrac{(x + \Delta x)^{2} - 2(x + \Delta x)+ 1 - (x^{2}- 2x + 1) }{\Delta x}⟹lim

Δx→0

Δx

(x+Δx)

2

−2(x+Δx)+1−(x

2

−2x+1)

As we know that,

First we can put the value of Δx in equation,

And check in which form the equation is.

\sf \implies \lim_{\Delta x \to 0} \dfrac{(x + 0)^{2} - 2(x + 0)+ 1 - (x^{2}- 2x + 1) }{0}.⟹lim

Δx→0

0

(x+0)

2

−2(x+0)+1−(x

2

−2x+1)

.

\sf

\sf \implies \lim_{\Delta x \to 0} \dfrac{\Delta x(2x + \Delta x - 2)}{\Delta x}.⟹lim

Δx→0

Δx

Δx(2x+Δx−2)

.

Put the value of Δx = 0 in equation, we get.

\sf \implies \lim_{\Delta x \to 0} 2x + 0 - 2.⟹lim

Δx→0

2x+0−2.

\sf \implies \lim_{\Delta x \to 0} 2x - 2.⟹lim

Δx→0

2x−2.

\sf \implies \lim_{\Delta x \to 0} \dfrac{(x + \Delta x)^{2} - 2(x + \Delta x)+ 1 - (x^{2}- 2x + 1) }{\Delta x} = 2x - 2.⟹lim

Δx→0

Δx

(x+Δx)

2

−2(x+Δx)+1−(x

2

−2x+1)

=2x−2.

Answer = (2x - 2).

Answered by gayathriandsruthifun
0

Answer:

 \frac{1}{5}  - 4 \\  =   \frac{1}{5}  -  \frac{4}{1}  \\   =  \frac{4}{1}  \times  \frac{5}{5}  =  \frac{20}{5}  \\  =  \frac{1}{5}   -  \frac{20}{5}  \\  =   \frac{1 - 20}{5}  \\  =  \frac{ - 19}{20}

Similar questions