Math, asked by kindle25, 8 months ago

Find the value of √ 1+9√ 9+10√11+ √5+5√16

Answers

Answered by mysticd
8

 The \: value \: of \: \sqrt{1+9\sqrt{9+10\sqrt{11+\sqrt{5+5\sqrt{16}}}}}

 = \sqrt{1+9\sqrt{9+10\sqrt{11+\sqrt{5+5\times 4}}}}

 = \sqrt{1+9\sqrt{9+10\sqrt{11+\sqrt{5+20}}}}

 = \sqrt{1+9\sqrt{9+10\sqrt{11+\sqrt{25}}}}

 = \sqrt{1+9\sqrt{9+10\sqrt{11+5}}}

 = \sqrt{1+9\sqrt{9+10\sqrt{16}}}

 = \sqrt{1+9\sqrt{9+10\times 4}}

 = \sqrt{1+9\sqrt{9+40}}

 = \sqrt{1+9\sqrt{49}}

 = \sqrt{1+9\times 7}

 = \sqrt{1+63}

 = \sqrt{64}

 = 8

Therefore.,

\red{ The \: value \: of \: \sqrt{1+9\sqrt{9+10\sqrt{11+\sqrt{5+5\sqrt{16}}}}}}

 \green { = 8}

•••♪

Similar questions