Math, asked by hemang2000, 1 year ago

find the value of (1+cos pi/8)(1+cos 3pi/8)(1+cos 5pi/8)(1+cos 7pi/8)

Answers

Answered by hotelcalifornia
262

Answer:

\left( 1 + \cos \frac { \pi } { 8 } \right) \left( 1 + \cos \frac { 3 \pi } { 8 } \right) \left( 1 + \cos \frac { 5 \pi } { 8 } \right) \left( 1 + \cos \frac { 7 \pi } { 8 } \right) = \frac { 1 } { 8 }

Solution:

Given that

\begin{array} { l } { \left( 1 + \cos \frac { \pi } { 8 } \right) \left( 1 + \cos \frac { 3 \pi } { 8 } \right) \left( 1 + \cos \frac { 5 \pi } { 8 } \right) \left( 1 + \cos \frac { 7 \pi } { 8 } \right) } \\\\ { = \left( 1 + \cos \frac { \pi } { 8 } \right) \left( 1 + \sin \left( \frac { \pi } { 2 } - \frac { 3 \pi } { 8 } \right) \right) \left( 1 + \sin \left( \frac { \pi } { 2 } - \frac { 5 \pi } { 8 } \right) \right) \left( 1 + \cos \left( \pi - \frac { 7 \pi } { 8 } \right) \right) } \end{array}

\because \cos \left( \frac { \pi } { 2 } - X \right) = \sin X

\begin{array} { l } { = \left( 1 + \cos \frac { \pi } { 8 } \right) \left( 1 + \sin \left( \frac { \pi } { 8 } \right) \right) \left( 1 - \sin \left( \frac { \pi } { 8 } \right) \right) \left( 1 - \cos \left( \frac { \pi } { 8 } \right) \right) } \\\\ { = \left( 1 - \cos ^ { 2 } \frac { \pi } { 8 } \right) \left( 1 - \sin ^ { 2 } \left( \frac { \pi } { 8 } \right) \right) } \end{array}

\begin{array} { l } { = \sin ^ { 2 } \left( \frac { \pi } { 8 } \right) \cos ^ { 2 } \left( \frac { \pi } { 8 } \right) } \\\\ { = \frac { 1 } { 4 } \times \left( 2 \sin \left( \frac { \pi } { 8 } \right) \cos \left( \frac { \pi } { 8 } \right) \right) ^ { 2 } } \end{array}

Using double angle formula,

\begin{array} { l } { = \frac { 1 } { 4 } \times \sin ^ { 2 } \left( \frac { 2 \pi } { 8 } \right) = \frac { 1 } { 4 } \times \sin ^ { 2 } \left( \frac { \pi } { 4 } \right) } \\\\ { = \frac { 1 } { 4 } \times \left( \frac { 1 } { \sqrt { 2 } } \right) ^ { 2 } = \frac { 1 } { 8 } } \end{array}

Hence,

\left( 1 + \cos \frac { \pi } { 8 } \right) \left( 1 + \cos \frac { 3 \pi } { 8 } \right) \left( 1 + \cos \frac { 5 \pi } { 8 } \right) \left( 1 + \cos \frac { 7 \pi } { 8 } \right) = \frac { 1 } { 8 }

Similar questions