Math, asked by killer502, 6 months ago

Find the value of (1 + i)⁴ in the form of a +ib:​

Answers

Answered by Anonymous
14

\huge\mathfrak\orange{Answer}

(1 +  {i})^{4}  \\  = ((1 -  { {i)}^{2} )}^{2}  \\  =  {(1 - i)}^{2} ( {1 - i)}^{2}  \\  = (  {1}^{2}  +  {i}^{2}  - 2 \times 1 \times i) \\ ( {1}^{2}  +  {i}^{2}  - 2 \times 1 \times i) \\  \\  = (1 +  {i}^{2}  - 2i)(1 +  {i}^{2}  - 2i) \\ put \:  {i}^{2}  =  - 1 \\  = (1  - 1 - 2i)(1 - 1 - 2i) \\ =  (0 - 2i)(0 - 2i) \\ =  ( - 2i)( - 2i) \\  = 4 {i}^{2}  \\ putting \:  {i}^{2}  =  - 1 \\  = 4( - 1) \\  =  - 4 \\  =  - 4 + 0 \\  =  - 4 + 0i \\ a =  - 4 \\ b = 0

a + ib =  - 4 + 0i

Similar questions