Math, asked by ishxtan8055, 1 month ago

Find the value of: 1 - sin² x 1️⃣ cos² x 2️⃣ cos x 3️⃣ sin² x 4️⃣ cos (2x)

Answers

Answered by sharanyalanka7
12

Step-by-step explanation:

To Find :-

1 - sin²x

Solution :-

We know that :-

sin²x + cos²x = 1

→ cos²x = 1 - sin²x

∴ 1 - sin²x = cos²x

Option '1' :- cos²x

Know More :-

Trigonometric Identities :-

1) sin²A + cos²A = 1

2) sec²A - tan²A = 1

3)cosec²A - cot²A = 1

Trigonometric Table :-

\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\sf Trigonometry\: Table \\ \begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\boxed{\boxed{\begin{array}{ |c |c|c|c|c|c|} \bf\angle A & \bf{0}^{ \circ} & \bf{30}^{ \circ} & \bf{45}^{ \circ} & \bf{60}^{ \circ} & \bf{90}^{ \circ} \\ \\ \rm sin A & 0 & \dfrac{1}{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{ \sqrt{3}}{2} &1 \\ \\ \rm cos \: A & 1 & \dfrac{ \sqrt{3} }{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{1}{2} &0 \\ \\ \rm tan A & 0 & \dfrac{1}{ \sqrt{3} }&1 & \sqrt{3} & \rm \infty \\ \\ \rm cosec A & \rm \infty & 2& \sqrt{2} & \dfrac{2}{ \sqrt{3} } &1 \\ \\ \rm sec A & 1 & \dfrac{2}{ \sqrt{3} }& \sqrt{2} & 2 & \rm \infty \\ \\ \rm cot A & \rm \infty & \sqrt{3} & 1 & \dfrac{1}{ \sqrt{3} } & 0\end{array}}}\end{gathered}\end{gathered}\end{gathered} \end{gathered}\end{gathered}\end{gathered}\end{gathered}\end{gathered}\end{gathered}

Similar questions