Math, asked by Puja14271, 11 months ago

Find the value of 1+sinA /1-sinA whole root

Answers

Answered by anuragcoolgupta
0

Answer:

tan(\frac{\pi}{4}+\frac{A}{2})

Step-by-step explanation:

\sqrt{\frac{1+sinA}{1-sinA} }

\sqrt{\frac{sin^2A+cos^2A+2sin\frac{A}{2}cos\frac{A}{2}}{sin^2A+cos^2A-2sin\frac{A}{2}cos\frac{A}{2}} }

\sqrt{\frac{(sin\frac{A}{2}+cos\frac{A}{2})^2}{(sin\frac{A}{2}-cos\frac{A}{2})^2} }

\frac{sin\frac{A}{2}+cos\frac{A}{2}}{sin\frac{A}{2}-cos\frac{A}{2}}

Dividing both numerator and denominator by cos\frac{A}{2}, we get:

\frac{1+tan\frac{A}{2}}{1-tan\frac{A}{2}}

since, tan\frac{\pi}{4} = 1, hence,

\frac{tan\frac{\pi}{4}+tan\frac{A}{2}}{tan\frac{\pi}{4}-tan\frac{A}{2}}

tan(\frac{\pi}{4}+\frac{A}{2})

Similar questions