Math, asked by Rock8603, 7 months ago

Find the value of 1 square + 2 square + 3 square + .... +10 square and hence deduce 2 square + 4 square + 6square+ .... + 20square

Answers

Answered by XXX3000
4

Answer:

so basically,

Step-by-step explanation:

(1²+2²+3²+4²+5²+6²+7²+8²+9²+10²) - (2²+4⁴+6⁶+8²+10²+12²+14²+16²+18²+20²)

= (55²) - (110²)

= 55²-110²

= -55²

ps mark me the brainliest..

Answered by pulakmath007
1
  • 1² + 2² + 3² + . . . + 10² = 385

  • 2² + 4² + 6² + . . . + 20² = 1540

Given :

1² + 2² + 3² + . . . + 10²

To find :

  • The value of 1² + 2² + 3² + . . . + 10²

  • Hence deduce 2² + 4² + 6² + . . . + 20²

Formula Used :

 \displaystyle \sf{ {1}^{2} + {2}^{2} + {3}^{2} + ... + {n}^{2} = \frac{n(n + 1)(2n + 1)}{6} }

Solution :

Step 1 of 2 :

Find value of 1² + 2² + 3² + . . . + 10²

We know that ,

 \displaystyle \sf{ {1}^{2} + {2}^{2} + {3}^{2} + ... + {n}^{2} = \frac{n(n + 1)(2n + 1)}{6} }

Thus we get

 \displaystyle \sf{ {1}^{2} + {2}^{2} + {3}^{2} + ... + {10}^{2}  }

 \displaystyle \sf{= \frac{10 \times ( 10 + 1)\times (20 + 1)}{6} }

 \displaystyle \sf{= \frac{10 \times 11 \times 21}{6} }

 \displaystyle \sf{= 385}

Step 2 of 2 :

Deduce the value of 2² + 4² + 6² + . . . + 20²

\displaystyle \sf  {2}^{2} + {4}^{2} + {6}^{2} + ... + {20}^{2}

\displaystyle \sf  =  {2}^{2}  \times  ({1}^{2} + {2}^{2} + {3}^{2} + ... + {10}^{2}  )

\displaystyle \sf  =  4 \times 385\:  \:  \: \bigg[ \:  \because \: {1}^{2} + {2}^{2} + {3}^{2} + ... + {10}^{2}  = 385\bigg]

\displaystyle \sf  =  1540

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. solve: 49³-30³+(....)³= 3 × 49 × 30 × 19

https://brainly.in/question/17577612

2. If x+1/x=3 then, x^7+1/x^7=

https://brainly.in/question/23295932

#SPJ3

Similar questions