Math, asked by yasinshah4520, 1 year ago

Find the value of (1/tanθ) + (sinθ/(1 + cosθ)), if 1 + cot^2θ = (√(3 + 2√2) - 1)^2.

Answers

Answered by A1111
2
We have,

 = &gt; \frac{1}{ \tan( \theta) } + \frac{ \sin( \theta) }{1 + \cos( \theta) } \\ <br /><br />= &gt; \frac{ \cos( \theta) }{ \sin( \theta) } + \frac{1 - \cos( \theta) }{ \sin( \theta) } \\ <br />= &gt; \csc( \theta)

Since,

 = &gt; 1 + \cot^{2} ( \theta) = \: \csc^{2} ( \theta) = ( \sqrt{3 + 2 \sqrt{2} } - 1)^{2} \\ \\ = &gt; \csc( \theta) = \sqrt{3 + 2 \sqrt{2} } - 1
Similar questions