find the value of
(1+tan²) (1-sin) (1+sin)
Attachments:

Answers
Answered by
17
[ 1+ tan^2 theta] [ 1 + sin theta ] [ 1- sin theta ]
= sec^2 theta * [ 1 - sin^2 theta ]
= sec^2 theta * cos^2theta
= 1 / cos^2theta * cos^2 theta
= 1.
= sec^2 theta * [ 1 - sin^2 theta ]
= sec^2 theta * cos^2theta
= 1 / cos^2theta * cos^2 theta
= 1.
Answered by
11
= (1+tan^2A)(1-sinA)(1+sinA)
= (1+tan^2A)(1-sin^A)
= (sec^2A)(cos^2A)
= sec^2A * 1/sec^2A
=1
= (1+tan^2A)(1-sin^A)
= (sec^2A)(cos^2A)
= sec^2A * 1/sec^2A
=1
Similar questions