Math, asked by kaifkhan48, 1 year ago

find the value of 1/x - 1/x-2 = 3 ​

Answers

Answered by sivaprasath
2

Answer:

x=1-\frac{1}{\sqrt{3}} (or) x=1+\frac{1}{\sqrt{3}}

Step-by-step explanation:

Given :

To solve for x, if

\frac{1}{x}-\frac{1}{x-2}=3

Solution :

\frac{1}{x}-\frac{1}{x-2}=3

\frac{(x - 2) - (x)}{x(x-2)}=3

\frac{-2}{x^2-2x}=3

-2=3(x^2-2x)

0=3x^2-6x+2

0=x^2-2x+\frac{2}{3} (Dividing by 3)

0=x^2-2x+\frac{2}{3}

0=x^2-(1+\frac{1}{\sqrt{3}})x-(1-\frac{1}{\sqrt{3}})+\frac{2}{3}

0=x[x-1-\frac{1}{\sqrt{3}})]-(1-\frac{1}{\sqrt{3}})(x -1-\frac{1}{\sqrt{3}})

0=(x-1+\frac{1}{\sqrt{3}})[x-1-\frac{1}{\sqrt{3}}]

For the product to be equal to 0,

Either,

x-1+\frac{1}{\sqrt{3}}=0 (or) x-1-\frac{1}{\sqrt{3}}=0

x=1-\frac{1}{\sqrt{3}} (or) x=1+\frac{1}{\sqrt{3}}


kaifkhan48: sir when you divided 3x²-6x+2 by 6 then it will be = x²/2 -x+1/3
sivaprasath: forgot to type by 2
sivaprasath: ok,I'll edit it,.
kaifkhan48: hmm fast plz am confused
sivaprasath: Is it ok , now ?
kaifkhan48: nope
Answered by LovelyG
6

Answer:

\large{\underline{\boxed{\sf x =  \dfrac{3 +  \sqrt{3} }{3}   \: \: or \:   \: \dfrac{3 -  \sqrt{3} }{3} }}}

Step-by-step explanation:

Given that-

 \sf  \dfrac{1}{x}  -  \dfrac{1}{x - 2}  = 3

Now, taking LCM of x and (x - 2), we get -

 \implies \sf  \frac{1}{x}  -  \frac{1}{x - 2}  = 3 \\  \\  \implies \sf  \frac{x - 2 - x}{x(x - 2)}  = 3 \\  \\  \implies \sf  \frac{ - 2}{x {}^{2}  - 2x}  = 3 \\  \\ \bf on \: cross \: multiplying -  \\  \\  \implies \sf 3(x {}^{2}  - 2x) =  - 2 \\  \\  \implies \sf 3x {}^{2}  - 6x =  - 2 \\  \\  \implies \sf 3x {}^{2}  - 6x + 2 = 0

Now, we got a quadratic equation. Solve this to get the value of x :

On comparing the given equation with the standard form of quadratic equation ax² + bx + c = 0,

a = 3

b = - 6

c = 2

Discriminant = b² - 4ac

⇒ D = (-6)² - 4 * 3 * 2

⇒ D = 36 - 24

⇒ D = 12

  \implies \tt x =  \frac{ - b \pm  \sqrt{D}}{2a}  \\  \\   \implies \tt x = \frac{ - ( - 6) \pm  \sqrt{12} }{2 \times 3}  \\  \\   \implies \tt x = \frac{6 \pm 2 \sqrt{3} }{6}  \\  \\   \implies \tt x = \frac{6  \pm 2 \sqrt{3} }{6}   \\ \\   \implies \tt x = \frac{2(3  \pm \sqrt{3}) }{6}  \\  \\   \implies \tt x = \frac{3 \pm  \sqrt{3} }{3}

Hence, the values of x are:

 \bf x =  \dfrac{3 +  \sqrt{3} }{3}   \: \: or \:   \: \dfrac{3 -  \sqrt{3} }{3}

Similar questions