Math, asked by rajusingh16636, 10 months ago

| find the value of (125)^-2/3 ×(625)^5/4 /(1/5)^-3​

Answers

Answered by pulakmath007
31

SOLUTION

TO DETERMINE

The value of

 \displaystyle \sf{ \frac{ {(125)}^{  - \frac{2}{3} } \times  {(625)}^{ \frac{5}{4} }  }{ \displaystyle \sf{{ \bigg( \frac{1}{5}  \bigg)}^{ - 3} }} }

EVALUATION

 \displaystyle \sf{ \frac{ {(125)}^{  - \frac{2}{3} } \times  {(625)}^{ \frac{5}{4} }  }{ \displaystyle \sf{{ \bigg( \frac{1}{5}  \bigg)}^{ - 3} }} }

 \displaystyle \sf{ =  \frac{ {( {5}^{3} )}^{  - \frac{2}{3} } \times  {( {5}^{4} )}^{ \frac{5}{4} }  }{ \displaystyle \sf{{ (  {5}^{ - 1} )}^{ - 3} }} }

 \displaystyle \sf{ =  \frac{ {(5)}^{  -3 \times  \frac{2}{3} } \times  {( 5 )}^{ 4 \times \frac{5}{4} }  }{ \displaystyle \sf{{ ( 5)}^{ - 1 \times  - 3} }} }

 \displaystyle \sf{ =  \frac{ {(5)}^{  -2 } \times  {( 5 )}^{ 5 }  }{ \displaystyle \sf{{ ( 5)}^{ 3} }} }

 \displaystyle \sf{ =  \frac{ {(5)}^{  -2 + 5 }   }{ \displaystyle \sf{{ ( 5)}^{ 3} }} }

 \displaystyle \sf{ =  \frac{ {(5)}^{  3 }   }{ \displaystyle \sf{{ ( 5)}^{ 3} }} }

 \displaystyle \sf{ = {5}^{3  - 3} }

 \displaystyle \sf{ = {5}^{0} }

 = 1

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. ( 5x³-3x²) ÷ x² find quotient and remainder

https://brainly.in/question/33498447

2. If 2^x+3 + 2^x – 4 =129, then find the value of x.

https://brainly.in/question/23183505

Answered by niraaghan
3

Answer:

Step-by-step explanation:

(5) ^ 3 x -2/3 x (5)^4 x 5/4 / (5)^3

5^-2 x 5^4  /  5^3

5^-2 + 4 -3

5 ^ 3-3

5^0

= 1

answer is 1

pls mark it as brainliest

Similar questions