Math, asked by chinmay43, 1 year ago

find the value of 125p^3 - 8q^3 if 5p -2q = 1 and pq = 2

Answers

Answered by Swarup1998
28
The answer is given below :

IDENTITY RULE :

x³ - y³ = (x - y)³ + 3xy(x - y)

SOLUTION :

Now,

125p³ - 8q³

= (5p)³ - (2q)³

= (5p - 2q)³ + 3×5p×2q×(5p - 2q)

= (5p - 2q)³ + 30pq(5p - 2q)

= 1³ + 30×2×1

= 1 + 60

= 61

Thank you for your question.

chinmay43: thanks a lot
Answered by mindfulmaisel
5

125 p^{3}-8 q^{3}=61

Given:

125p^{3} - 8q^{3}

5p - 2q = 1

pq = 2

To Find:  

Find the value of 125 p^{3}-8 q^{3}

Answer:

IDENTITY RULE:

x^{3}-y^{3}=(x-y)^{3}+3 x y(x-y)

Given that,

125 p^{3}-8 q^{3}

5 p-2 q=1 \ \& \ p q=2

=(5 p)^{3}-(2 q)^{3}

=(5 p-2 q)^{3}+3 \times 5 p \times 2 q \times(5 p-2 q)

=(5 p-2 q)^{3}+30pq (5p-2q)

=1^{3}+30 \times 2 \times 1

= 1 + 60

125 p^{3}-8 q^{3}=61

Similar questions