Math, asked by rfarhankhan, 3 months ago

find the value of 13³- 12³​

Answers

Answered by zaralarsson21
0

Answer:

=2197- 1728

= 469

Hope it helps

Answered by MrImpeccable
0

{\huge{\underline{\boxed{\red{\mathcal{Answer}}}}}}

To Solve:

  • 13³- 12³

Solution:

 \implies 13^3 - 12^3 \\ a^3 - b^3 = (a-b)(a^2 + ab + b^2) \\ \implies 13^3 - 12^3 = (13-12)(13^2 + 13*12 + 12^2) \\ \implies 13^3 - 12^3 = 169 + 156 + 144 \\ \bold{\implies 13^3 - 12^3 = 469} \\

Formula Used:

  • a^3 - b^3 = (a-b)(a^2 + ab + b^2)

Learn More:

 \boxed{\begin{minipage}{7 cm}\boxed{\bigstar\:\:\textbf{\textsf{Algebric\:Identity}}\:\bigstar}\\\\1)\bf\:(A+B)^{2} = A^{2} + 2AB + B^{2}\\\\2)\bf\: (A-B)^{2} = A^{2} - 2AB + B^{2}\\\\3)\bf\: A^{2} - B^{2} = (A+B)(A-B)\\\\4)\bf\: (A+B)^{2} = (A-B)^{2} + 4AB\\\\5)\bf\: (A-B)^{2} = (A+B)^{2} - 4AB\\\\6)\bf\: (A+B)^{3} = A^{3} + 3AB(A+B) + B^{3}\\\\7)\bf\:(A-B)^{3} = A^{3} - 3AB(A-B) + B^{3}\\\\8)\bf\: A^{3} + B^{3} = (A+B)(A^{2} - AB + B^{2})\\\\9)\bf\: A^{3} - B^{3} = (A-B)(A^{2} + AB + B^{2})\\\\ \end{minipage}}

Similar questions