Math, asked by babu154, 1 year ago

find the value of 16 a^4x^3+54ay^3

Answers

Answered by KunalTheGreat
11
HI,
=============

Step  1 :

Equation at the end of step  1  :


 ((16 • (
 a^{4} )) • ( x^{3} )) + (2• 3^{3} a y^{3} )

 Step  2  :
Equation at the end of step  2  : ( 2^{4}  a^{4}  •  x^{3} ) + (2• 3^{3} a y^{3} )


Step  3  :
Step  4  :Pulling out like terms :

 

4.1     Pull out like factors :

  16 a^{4}  x^{3} + 54a y^{3}   =   2a • (8 a^{3}  x^{3} + 27 y^{3}


Trying to factor as a Sum of Cubes :

 4.2      Factoring:  8 a^{3}  x^{3} + 27 y^{3}  


Theory : A sum of two perfect cubes,   a^{3}  b^{3}  can be factored into  :

             (a+b) • ( a^{2} -ab+ b^{2} )


Proof  : (a+b) • ( a^{2} -ab+ b^{2} ) = 

     a^{3} - a^{2} b+a b^{2} +b a^{2} - b^{2} a+ b^{3} =

     a^{3} +( a^{2} b-b a^{2} )+(a b^{2} - b^{2} a)+ b^{3} =

     a^{3} +0+0+ b^{3} =

     a^{3} + b^{3}


Check :  8  is the cube of  2 

Check :  27  is the cube of   3 


Check :   a^{3} is the cube of    a^{1}


Check :   x^{3} is the cube of    x^{1}


Check :   y^{3} is the cube of    y^{1}


Factorization is :
             (2ax + 3y)  •  (4x a^{2}  x^{2} - 6axy + 9 y^{2}

Trying to factor a multi variable polynomial :

 4.3    Factoring    4 a^{2}  x^{2} - 6axy + 9 y^{2}


Try to factor this multi-variable trinomial using trial and error 

 
→Factorization fails

∴Final result : 2a • (2ax + 3y) • (4 a^{2}  x^{2}  - 6axy + 9 y^{2} )
============
HOPE HELPED :))
ENJOY USING BRAINLY.IN :-)

rohitkumargupta: wow grt man
KunalTheGreat: thank you
Similar questions