Math, asked by pnarayananswamyp, 10 months ago

find the value of (2/7)^6×7/2^4×2/7^2

Answers

Answered by naavyya
0

Answer:

2³ / 7⁷

Step-by-step explanation:

2⁶ ÷ 7⁶ * 7 ÷ 2⁴ * 2 ÷ 7²

2⁶⁻⁴⁺¹ * 7⁻⁶⁺¹⁻²

2³ * 7⁻⁷

2³ / 7⁷

Answered by Anonymous
1

Solution :

 \implies \sf { \bigg( \frac{2}{7} \bigg)}^{6} \times  {\bigg(\frac{7}{2}\bigg)}^{4} \times  {\bigg (\frac{2}{7}\bigg)}^{2} \\  \\  \implies \sf { \bigg( \frac{2}{7} \bigg)}^{6} \div {\bigg(\frac{2}{7}\bigg)}^{4} \times  {\bigg (\frac{2}{7}\bigg)}^{2}  \\  \\  \implies \sf { \bigg( \frac{2}{7} \bigg)}^{6 - 4} \times  {\bigg (\frac{2}{7}\bigg)}^{2} \\  \\ \implies \sf { \bigg( \frac{2}{7} \bigg)}^{2} \times  {\bigg (\frac{2}{7}\bigg)}^{2} \\  \\ \implies \sf { \bigg( \frac{2}{7} \bigg)}^{2 + 2} \\  \\ \implies \sf { \bigg( \frac{2}{7} \bigg)}^{4} \\  \\  \implies \sf \frac{16}{2401}

IdentitY Used :

 \large \implies \sf{m}^{a} \times  {m}^{b}  =  {m}^{a + b} \\  \\ \large \implies \sf{m}^{a} \div  {m}^{b}  =  {m}^{a  - b}

Similar questions