find the value of (2-a)³+(2-b)³+(2-c)³-3(2-a)(2-b)(2-c) when a+b+c=6
Answers
Answered by
24
if x + y +z =0 then x(cube)+y(cube)+z(cube)-3xyz=0
therefore, if x = 2-a ; y = 2-b ; z = 2-c
then x+y+z i.e., 2-a+2-b+2-c=0.this implies that a+b+c=6
then x(cube)+y(cube)+z(cube)-3xyz=0 i.e,
(2-a)3+(2-b)3+(2-c)3-3(2- a)(2-b)(2-c) = 0
i hope u understood
therefore, if x = 2-a ; y = 2-b ; z = 2-c
then x+y+z i.e., 2-a+2-b+2-c=0.this implies that a+b+c=6
then x(cube)+y(cube)+z(cube)-3xyz=0 i.e,
(2-a)3+(2-b)3+(2-c)3-3(2- a)(2-b)(2-c) = 0
i hope u understood
Answered by
0
ANSWER:
Therefore, (2-a)³+(2-b)³+(2-c)³-3(2-a)(2-b)(2-c) = 0
Hope It Will Help You..!!
Attachments:
Similar questions