find the value of (2-a)³+(2-b)³+(2-c)³-3(2-a)(2-b)(2-c) where a+b+c=6
Answers
Answered by
1
Answer:
if x + y +z =0 then x(cube)+y(cube)+z(cube)-3xyz=0
therefore, if x = 2-a ; y = 2-b ; z = 2-c
then x+y+z i.e., 2-a+2-b+2-c=0.this implies that a+b+c=6
then x(cube)+y(cube)+z(cube)-3xyz=0 i.e,
(2-a)3+(2-b)3+(2-c)3-3(2- a)(2-b)(2-c) = 0
Step-by-step explanation:
Answered by
2
Answer:
So (2-a)³+(2-b)³+(2-c)³-3(2-a)(2-b)(2-c)=0
Step-by-step explanation:
a+b+c=6
(2-a)³+(2-b)³+(2-c)³-3(2-a)(2-b)(2-c)
Now let 2-a= x, 2-b = y and 2-c = z
x+y+c=2-a+2-b+2-c=6-(a+b+c)=6-6=0
So x+y+z=0
Then x³+y³+z³-3xyz=0
So (2-a)³+(2-b)³+(2-c)³-3(2-a)(2-b)(2-c)=0
Similar questions