Find the value of (2+i+i²)³
Answers
Answered by
6
Answer:
The value of ( 2 + i + i² )³ is - 2 + 2i.
Step-by-step-explanation:
The given complex number is ( 2 + i + i² )³.
We have to evaluate the given complex number.
Now, we know that,
( a + b + c )³ = a³ + b³ + c³ + 3 ( a + b ) ( b + c ) ( a + c )
By using this identity,
( 2 + i + i² )³
⇒ 2³ + i³ + ( i² )³ + 3 ( 2 + i ) ( i + i² ) ( 2 + i² )
We know that,
- i² = - 1
- i³ = - i
Now,
⇒ 8 + ( - i ) + ( - 1 )³ + 3 ( 2 + i ) [ i + ( - 1 ) ] [ 2 + ( - 1 ) ]
⇒ 8 - i - 1 + 3 ( 2 + i ) ( i - 1 ) ( 2 - 1 )
⇒ 8 - 1 - i + 3 ( 2 + i ) ( i - 1 ) * 1
⇒ 7 - i + ( 6 + 3i ) ( i - 1 )
⇒ 7 - i + 6 ( i - 1 ) + 3i ( i - 1 )
⇒ 7 - i + 6i - 6 + 3i² - 3i
⇒ 7 - 6 - i + 6i - 3i + 3 * ( - 1 )
⇒ 1 + 5i - 3i - 3
⇒ 1 - 3 + 5i - 3i
⇒ - 2 + 2i
∴ The value of ( 2 + i + i² )³ is - 2 + 2i.
Answered by
13
Answer:
The value of(2+i+i²)³ is -2+2i
Similar questions