Math, asked by sai1220, 1 year ago

find the value of 2^n cosx/2.cosx/4.cosx/8......cosx/2^n

Answers

Answered by Pitymys
6

We have to simplify

 f(x)=2^n \cos(x/2).\cos(x/4).\cos(x/8)......\cos(x/2^n) .

Use the formula  2\sin \alpha \cos \alpha =\sin (2\alpha )

Now,

 f(x) \sin(x/2)=2^n \cos(x/2)\sin(x/2).\cos(x/4).\cos(x/8)......\cos(x/2^n)\\<br />f(x) \sin(x/2^n)=2^n \cos(x/2)\sin(x/2).\cos(x/4).\cos(x/8)......[\cos(x/2^n) \sin(x/2^n)]\\<br />f(x) \sin(x/2^n)=2^{n-1} \cos(x/2)\sin(x/2).\cos(x/4).\cos(x/8)......[2\cos(x/2^n) \sin(x/2^n)]\\<br />f(x) \sin(x/2^n)=2^{n-1} \cos(x/2)\sin(x/2).\cos(x/4).\cos(x/8)......\cos(x/2^{n-1}) \sin(x/2^{n-1}) \\<br />

 f(x) \sin(x/2^n)=2^{n-2} [\cos(x/2)\sin(x/2)].\cos(x/4).\cos(x/8)......[2\cos(x/2^{n-1}) \sin(x/2^{n-1})] \\<br />f(x) \sin(x/2^n)=2^{n-2} [\cos(x/2)\sin(x/2)].\cos(x/4).\cos(x/8)......\cos(x/2^{n-2}) \sin(x/2^{n-2}) \\

Proceeding in this way,

 f(x) \sin(x/2^n)=2\cos(x/2)\sin(x/2)\\<br />f(x) \sin(x/2^n)=\sin x\\<br />f(x) =\frac{\sin x}{\sin(x/2^n)}<br />

Similar questions