Math, asked by 120091572, 7 months ago

find the value of 2 sin^2 30° - 3 cos^2 45° + tan^2 60°+ 3 sin^2 90°​

Answers

Answered by nishasingh118001
0

Step-by-step explanation:

2×(1/2)^2-3×(1/√2)^2 +(√3)^2 +3(1)^2

2×1/4 -3/2 +3+3

1-3+6+6/2 = 5

Answered by Anonymous
1

Solution:-

\rm \implies2 \sin {}^{2} 30 {}^{o}  - 3 \cos {}^{2} 45 {}^{o}   +  \tan {}^{2} 60 {}^{o}  + 3 \sin {}^{2} 90 {}^{o}

We know that the value of

 \rm \:  \to \sin30 {}^{o}  =  \dfrac{1}{2}

 \rm \to \cos45 {}^{o}  =  \dfrac{1}{ \sqrt{2} }

 \rm \to \:  \tan60 {}^{o}  =  \sqrt{3}

 \rm \to \sin90 {}^{o}  = 1

Now put the value

\rm \implies2 \sin {}^{2} 30 {}^{o}  - 3 \cos {}^{2} 45 {}^{o}   +  \tan {}^{2} 60 {}^{o}  + 3 \sin {}^{2} 90 {}^{o}

 \rm \implies \: 2 \times   \bigg(\dfrac{1}{2}  \bigg) ^{2}  - 3 \times   \bigg(\dfrac{1}{ \sqrt{2} }  \bigg) ^{2}  + ( \sqrt{3} ) {}^{2}  + 3 \times 1

 \rm \:  \implies \: 2 \times  \dfrac{1}{4}  - 3 \times  \dfrac{1}{2}  + 3 + 3 \times 1

 \rm \implies \dfrac{1}{2}  -  \dfrac{3}{2}  + 6

 \rm \implies \:  \dfrac{1 - 3 + 12}{2}

 \rm \implies \dfrac{1 3 - 3}{2}

 \rm \: \implies  \dfrac{10}{2}

 \rm \: 5

Answer = 5

Similar questions