Math, asked by shyamaldebbarma2020, 8 months ago

find the value of:-​

Attachments:

Answers

Answered by dinkarniharikapitts
0

Answer:

Correct answer is:5 root of x to the power a square-b square-c square.

That's it.

Answered by Anonymous
22

\sf\large\green{  } \sqrt[5]{ {x}^{a - b} }  \times \sf\large\green{ }  \sqrt[5]{ {x}^{b - c} }  \times \sf\large\green{ } \sqrt[5]{ {x}^{c - a} }  \\ \sf\large\green{ \sqrt[p]{q}  =  {q}^{ \frac{1}{p} }   }  \\ =  > \sf\large\green{ }( { {x}^{a - b}) }^{ \frac{1}{5} }  \times \sf\large\green{ } {( {x}^{b - c}) }^{ \frac{1}{5} }  \times \sf\large\green{ } { ({x}^{c - a} )}^{ \frac{1}{5} }  \\  \\  =  >  \sf\large\green{ } ({x}^{ \frac{a}{5} -  \frac{b}{5}  } ) \times ( {x}^{  \frac{b}{5} -  \frac{c}{5}   } ) \times ( {x}^{ \frac{c}{5} -  \frac{a}{5}  } ) \\  \\  \sf\large\green{  {p}^{x} +  {p}^{y}  +  {p}^{z} =  {p}^{(x + y + z)}   } \\  \\ \sf\large\green{ } =  >  {x}^{ (\frac{a}{5} -  \frac{b}{5} ) +  (\frac{b}{5}  -  \frac{c}{5})   +  (\frac{c}{5} -  \frac{a}{5} ) }  \\  \\  =  > \sf\large\green{ } {x}^{( \frac{a}{5} -  \frac{a}{5} ) +  (\frac{ b}{5}  -  \frac{b}{5}  ) +  (\frac{c}{5} -  \frac{c}{5})  }  \\  \\  =  > \sf\large\green{ } {x}^{0}  \\  \\\sf\large\green{  {p}^{0}  = 1}  \\   \\  =  > \sf\large\red{1 }

﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏

Hope it will help uh...

﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏

Similar questions