Math, asked by vishalcharlie13, 7 months ago

Find the value of 27a3+64 b3 if 3a+4b=10 and ab=2

Answers

Answered by Anonymous
6

Answer :-

  • 27a³ + 64b³ = 280

step by step explaination :

To find :-

  • the value of 27a³ + 64b³

Solution :-

 \sf 3a + 4b = 10

Cube on both sides

 \longrightarrow  \sf (3a + 4b) {}^{3}  = 10

 \longrightarrow  \sf {(3a)}^{3}  +  {(4b)}^{3}  + 3 \times 3a \times 4b(3a + 4b = 1000 \\

 \longrightarrow  \sf 27 {a}^{3}  + 64 {b}^{3}  + 36ab(3a + 4b) = 1000 \\

 \longrightarrow  \sf 27 {a}^{3}  + 64 {b}^{3}  + 36 \times 2 \times 10 = 1000 \\

 \longrightarrow  \sf 27 {a}^{3}  + 64 {b}^{3}  + 720  = 1000 \\

 \longrightarrow  \sf 27 {a}^{3}  + 64 {b}^{3}  = 1000 - 720

 \longrightarrow  \sf 27 {a}^{3}  + 64 {b}^{3}  = 280

Hence, 27a³ + 64b³ = 280.

Similar questions