Math, asked by rekhaghode1735, 11 months ago

Find the value of 27x³ + 8y³, if
(i) 3x + 2y = 14 and xy=8
(ii) 3x + 2y = 20 and xy=

Answers

Answered by nikitasingh79
3

Given :  (i) 3x + 2y = 14 and xy = 8

(ii) 3x + 2y = 20 and xy = 14/9

To find : value of  27x³ + 8y³

 Solution :  

(i) 3x + 2y = 14 and xy = 8

By using the identity, (a + b)³ = a³ +  b³ + 3ab(a + b)  

On cubing 3x + 2y = 14 both sides,  

(3x + 2y)³ = 14³

(3x)³ + (2y)³ + 3( 3x )(2y) (3x + 2y) = 2744

27x³ + 8y³ + 18xy(3x + 2y) = 2744

27x³ + 8y³ + 18 x 8 x 14 = 2744

[xy = 8]

27x³ + 8y³ +  2016 = 2744

27x³ + 8y³ = 2744 - 2016

27x³ + 8y³  = 728

Hence the value of  27x³ + 8y³  is  728.

(ii)   3x + 2y = 20 and xy = 14/9

By using the identity, (a + b)³ = a³ +  b³ + 3ab(a + b)  

On cubing 3x + 2y = 20 both sides,  

(3x + 2y)³ = 20³

(3x)³ + (2y)³ + 3( 3x )(2y) (3x + 2y) = 8000

 27x³ + 8y³ + 18xy(3x + 2y) = 8000

27x³ + 8y³ + 18 x 14/9 x 20 = 8000

[xy = 14/9]

 27x³ + 8y³ +  560 = 8000

27x³ + 8y³ = 8000 - 560

27x³ + 8y³  = 7440

Hence the value of  27x³ + 8y³  is  7440.  

HOPE THIS ANSWER WILL HELP YOU…..

 

Similar questions :

Find the value of 64x³ – 125z³, if 4x – 5z = 16 and xz=12.

https://brainly.in/question/15897790

 

If 2x+3y=13 and xy=6, find the value of 8x³+27y³.

https://brainly.in/question/15897617

Answered by Anonymous
2

Answer:

Step-by-step explanation:

On cubing 3x + 2y = 14 both sides,  

(3x + 2y)³ = 14³

(3x)³ + (2y)³ + 3( 3x )(2y) (3x + 2y) = 2744

27x³ + 8y³ + 18xy(3x + 2y) = 2744

27x³ + 8y³ + 18 x 8 x 14 = 2744

[xy = 8]

27x³ + 8y³ +  2016 = 2744

27x³ + 8y³ = 2744 - 2016

27x³ + 8y³  = 728

Similar questions