Math, asked by surindersingh08089, 2 months ago

Find the value of 297 X 303 by using an appropriate Algebraic identity.​

Answers

Answered by thebrainlykapil
36

Given :

  • 297 × 303

 \\

To Find :

  • Value of 297 × 303 using algebraic identity.

 \\

Identity Used :

  • (a + b)(a - b) = a² - b²

 \\

Solution :

⟹ 297 can be written as 300 - 3

⟹ 303 can be written as 300 + 3

⟹ Now, we have got same a and b . Now we will use the identity to find the answer.

⠀⠀

Using Identity :

⟼ (a + b)(a - b) = a² - b²

⟼ (300 + 3)(300 - 3) = a² - b²

⟼ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ = (300)² - (3)³

⟼ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ = 90000 - 9

⟼ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ = 89,991

Thus The Required answer is 89991

⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

 \small\boxed{\begin{array}{cc}\boxed{\bigstar\:\:\textbf{\textsf{Algebric\:Identity}}\:\bigstar}\\\\1)\bf\:(A+B)^{2} = A^{2} + 2AB + B^{2}\\\\2)\sf\: (A-B)^{2} = A^{2} - 2AB + B^{2}\\\\3)\bf\: A^{2} - B^{2} = (A+B)(A-B)\\\\4)\sf\: (A+B)^{2} = (A-B)^{2} + 4AB\\\\5)\bf\: (A-B)^{2} = (A+B)^{2} - 4AB\\\\6)\sf\: (A+B)^{3} = A^{3} + 3AB(A+B) + B^{3}\\\\7)\bf\:(A-B)^{3} = A^{3} - 3AB(A-B) + B^{3}\\\\8)\sf\: A^{3} + B^{3} = (A+B)(A^{2} - AB + B^{2})\\\\\end{array}}

Answered by RvChaudharY50
4

To Find :- 297 * 303 ?

Solution :-

→ 297 * 303

→ (300 - 3) * (300 + 3)

Let

  • 300 = a
  • 3 = b .

we know that,

  • (a - b) * (a + b) = a² - b²

using this algebraic identity we get,

→ (300)² - (3)²

→ 90000 - 9

89991 (Ans.)

Learn more :-

what number is on one tenth in number 29.45

https://brainly.in/question/38102272

Similar questions