Math, asked by nishant140, 1 year ago

Find the value of (2a – 3b)2 using appropriate identity.​

Answers

Answered by AbhijithPrakash
30

\rule{300}{1.05}

Answer:

\left(2a-3b\right)^2:\quad 4a^2-12ab+9b^2

Step-by-step explanation:

\rule{300}{1.05}

\left(2a-3b\right)^2

\rule{300}{1.05}

\mathrm{Apply\:Perfect\:Square\:Formula}:\quad \left(a-b\right)^2=a^2-2ab+b^2

a=2a,\:\:b=3b

=\left(2a\right)^2-2\cdot \:2a\cdot \:3b+\left(3b\right)^2

\rule{300}{1.05}

\mathrm{Simplify}\:\left(2a\right)^2-2\cdot \:2a\cdot \:3b+\left(3b\right)^2

\left(2a\right)^2-2\cdot \:2a\cdot \:3b+\left(3b\right)^2

\rule{300}{0.5}

\left(2a\right)^2=4a^2

2\cdot \:2a\cdot \:3b=12ab

\left(3b\right)^2=9b^2

\rule{300}{1.05}

=4a^2-12ab+9b^2

\rule{300}{1.05}

Answered by Stylishhh
10

Answer:

4a² - 12ab + 9b²

Step-by-step explanation:

(2a - 3b)²

As we know that (a - b)² = a² - 2ab + b²

→ (2a)² - 2 × 2a × 3b + (3b)²

→ 4a² - 12ab + 9b²

Hope it Helps !!!!

Similar questions