Find the value of 2sinπ/32
Answers
Answer: 0.1960
Step-by-step explanation:
The half angle formulas are:
sin(B/2) = ± √([1 − cos B] / 2)
cos(B/2) = ± √([1 + cos B] / 2)
But π/32 is in the first quadrant, so we can just ignore the minus.
Use it first to try to find sin(π/32):
sin(π/32) = √([1 − cos π/16] / 2)
But you don't know cos(π/16), so use the cos half-angle formula to find that:
cos(π/16) = √([1 + cos π/8] / 2)
But again, you don't know cos π/8, so AGAIN use the half-angle formula to find that:
cos(π/8) = √([1 + cos π/4] / 2)
Finally! You know that cos π/4 = √2/2, so:
cos(π/8) = √([1 + √2/2] / 2)
Now you can go back and plug that into the previous one:
cos(π/16) = √([1 + √([1 + √2/2] / 2)] / 2)
And then you can plug THAT into the original one:
sin(π/32) = √([1 − √([1 + √([1 + √2/2] / 2)] / 2)] / 2)
Then double it to get your answer:
2sin(π/32) = 2√([1 − √([1 + √([1 + √2/2] / 2)] / 2)] / 2)
2√([1 − √([1 + √([(2 + √2)/2] / 2)] / 2)] / 2)
2√([1 − √([1 + √((2 + √2)/4)] / 2)] / 2)
2√([1 − √([1 + √(2 + √2)/2] / 2)] / 2)
2√([1 − √([2 + √(2 + √2))/2] / 2)] / 2)
2√([1 − √((2 + √(2 + √2))/4)] / 2)
2√([1 − √(2 + √(2 + √2))/2] / 2)
2√([(2 − √(2 + √(2 + √2)))/2] / 2)
2√((2 − √(2 + √(2 + √2)))/4)
2√(2 − √(2 + √(2 + √2)))/2
√(2 − √(2 + √(2 + √2)))
√(2 − √(2 + √(2 + √2))) ≈ 0.1960
2sin π/32 ≈ 0.1960