Find the value of 30+
(e) Ifa+b+c= 12 and a+b+c=64, find the value of ab + bc + ac.
Answers
Answered by
3
Step-by-step explanation:
(a+b+c) square = a square + b square + c square +2ab +2bc +2ca
(12) square = 64 + 2 ( ab + bc + ca)
144 = 64 + 2 ( ab + bc + ca)
144-64 = 2 ( ab + bc + ca)
80 = 2 ( ab +bc + ca)
80÷2 = ab + bc + Ca
40 = ab +bc +ca
Answered by
0
We know a Algebraic Identity :
(a + b + c)² = a² + b² + c² + 2ab + 2bc + 2ac
Substitute The Values
⇒ 12² = 64 + 2ab + 2bc + 2ac
⇒ 12² = 64 + 2(ab + bc + ac)
⇒ 144 = 64 + 2(ab + bc + ac)
Subtracting 64 from Both Sides
⇒ 144 - 64 = 64 + 2(ab + bc + ac) - 64
⇒ 80 = 2(ab + bc + ac)
Dividing Both Sides by 2
⇒ 80/2 = [2(ab + bc + ac)]/2
⇒ 40 = ab + bc + ac
Similar questions