Math, asked by nadira465, 7 months ago

find the value of 3cot^2 60° +sec^2 45°​

Answers

Answered by Anonymous
12

\;\;\underline{\textbf{\textsf{ Given:-}}}

\sf3\cot^260\degree+\sec^245\degree

\;\;\underline{\textbf{\textsf{ To Find :-}}}

• Value of \sf3\cot^260\degree+\sec^245\degree.

\;\;\underline{\textbf{\textsf{ Solution:-}}}

 \\  \underline{\textsf{Given  that }} \\  \\

\sf3\cot^260\degree+\sec^245\degree

\sf\dashrightarrow 3(\cot60\degree)^2+(\sec45\degree)^2

 \\  \underline{\textsf{ Now, put the values of cot60° and sec45°}} \\  \\

\sf\dashrightarrow 3\times(\dfrac{1}{\sqrt{3}})^2+(\sqrt{2})^2

\sf\dashrightarrow 3\times\dfrac{1}{3}+2

\sf\dashrightarrow 1+2

\sf\dashrightarrow 3

\;\;\underline{\textbf{\textsf{ Hence:-}}}

Value of \sf3\cot^260\degree+\sec^245\degree is 3.

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

 \\  \underline{\textsf{Have a look here }} \\  \\

__________________________________________________________________

\begin{array}{ |c |c|c|c|c|c|} \bf\angle A &   \bf{0}^{ \circ} &  \bf{30}^{ \circ} &   \bf{45}^{ \circ}  &  \bf{60}^{ \circ} &   \bf{90}^{ \circ}  \\ \\ \rm sin A & 0 & \dfrac{1}{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{ \sqrt{3} }{2} &1 \\  \\ \rm cos \: A & 1 & \dfrac{ \sqrt{3} }{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{1}{2} &0 \\  \\ \rm tan A & 0 & \dfrac{1}{ \sqrt{3} }& 1 &  \sqrt{3}  & \rm Not \: De fined \\  \\ \rm cosec A &  \rm Not \: De fined & 2&  \sqrt{2}  & \dfrac{2}{ \sqrt{3} } &1 \\  \\ \rm sec A & 1 & \dfrac{2}{ \sqrt{3} }&  \sqrt{2}  & 2 & \rm Not \: De fined \\  \\ \rm cot A & \rm Not \: De fined &  \sqrt{3} & 1  &  \dfrac{1}{ \sqrt{3} } & 0 \end{array}

_______________________________________________________________________

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

Answered by BrainlyllHeroll
0

Answer:

3 is the correct answer

Similar questions
Math, 11 months ago