Find the value of (3tan41/cot 49)2-(sin35sec55/tan10tan20tan60tan70tan80)²
Answers
Answered by
2
Answer:
26/3
Step-by-step explanation:
Find the value of (3tan41/cot 49)2-(sin35sec55/tan10tan20tan60tan70tan80)²
tanθ = Cot(90-θ)
tan41 = Cot(90-41) = Cot49
tan 10 = cot 80
tan 20 = cot 70
Secθ = 1/Cosθ
Sec55 = 1/Cos55
Cosθ = Sin(90-θ)
Cos55 = Sin(90-55) = Sin35
sin35sec55 = Sin35* (1/Sin35) = 1
putting all these values in equation
Tanθ.Cotθ = 1
tan80cot80 = 1 & tan70cot70 = 1
Tan60 = √3
Answered by
0
Answer:
26/3
Step
Find the value of (3tan41/cot 49)2-(sin35sec55/tan10tan20tan60tan70tan80)²
tanθ = Cot(90-θ)
tan41 = Cot(90-41) = Cot49
tan 10 = cot 80
tan 20 = cot 70
Secθ = 1/Cosθ
Sec55 = 1/Cos55
Cosθ = Sin(90-θ)
Cos55 = Sin(90-55) = Sin35
sin35sec55 = Sin35* (1/Sin35) = 1
putting all these values in equation
Tanθ.Cotθ = 1
tan80cot80 = 1 & tan70cot70 = 1
Tan60 = √3
Similar questions