Math, asked by keshav8777, 3 months ago

Find the value of 3x + 5y, if 9x^2 + 25y^2 = 181 and xy = -6​

Answers

Answered by CloseEncounter
13

\tt\red{Question}

Find the value of 3x + 5y, if 9x² + 25y² = 181 and xy = -6

\tt{ Answer= \green{1}}

Solution:

Given that,

⁣      9x²+25x²=181⁣        (I)

⁣      XY = -6⁣           ⁣   (ii)

Find :- 3x+5y

{\boxed{\sf{by\ using\ identity \red{(a+b)²= a²+b²+2ab}}}}

\tt{(3x+5y)²= 9x²+25y²+2 \times 3x \times.5y}

\tt{(3x+5y)²= 9x²+25y²+30xy ⁣       (iii)}

now putting the value of (I) and (ii) in equation (iii)

\tt{ →    (3x+5y)²= 181+30×(-6)}

\tt{ → (3x+5y)²= 181-180 }

\tt{ → (3x+5y)²= 1}

\tt{ →     (3x+5y)= \sqrt{1} }

\tt{→(3x+5y)= \sqrt{1 \times 1}}

\tt{→(3x+5y)= 1}

so the value of 3x+5y= 1

\tt{                   }

Similar questions