Math, asked by JeffJeff, 3 months ago

Find the value of 4/(216)^((-2)⁄3) - 1/(256)^((-3)⁄4)

Answers

Answered by mayurs413
1

Answer:

Iygiyctvtctcygyy

Ubuk

Step-by-step explanation:

Fyckhcugcgcttcchyh hope it helps you

Answered by Salmonpanna2022
1

Step-by-step explanation:

 \bf \underline{Solution-} \\

\textsf{We have,}\\

  \sf{ \frac{4}{(216 {)}^{  - \frac{  2}{3} }  }  -  \frac{1}{(256 {)}^{ -  \frac{3}{4} } }} \\

  \sf{ =  \frac{4}{( {6}^{3}  {)}^{   \frac{   - 2}{3} }  }  -  \frac{1}{( {4}^{4}  {)}^{  \frac{ - 3}{4} } }} \\

  \sf{ =  \frac{4}{( {6}{)}^{    \cancel{3}\times \frac{   - 2}{ \cancel{3}} }  }  -  \frac{1}{( {4} {)}^{ \cancel{4} \times   \frac{ - 3}{ \cancel{4}} } }} \\

  \sf{ =  \frac{4}{( {6})^{ - 2} }  -  \frac{1}{( {4})^{ - 3}  }} \\

 \sf{ = 4(6 {)}^{2} - (4 {)}^{3}  } \\

 \sf{ = 4 \times 36  - 64} \\

 \sf{ = 144 - 64} \\

 \sf{ = 80} \:  \:  \:  \bf{Ans.} \\

Similar questions