Math, asked by jayanirijhwani2008, 2 months ago

find the value of 4 √81 ki power -2

Answers

Answered by 12thpáìn
7

\pink{ \boxed{  \bf4\sqrt{(81)}^{-2}  =  \dfrac{1}{9}}}\\

Method 1

\\  \sf\:  \:  \:  \:  \:  \:  \:  \:  \:  \implies4\sqrt{(81)}^{-2}

 \sf\:  \:  \:  \:  \:  \:  \:  \:  \:  \implies4\sqrt{( {3}^{4} )}^{-2}

 \sf\:  \:  \:  \:  \:  \:  \:  \:  \:  \implies3^{-2}

 \sf\:  \:  \:  \:  \:  \:  \:  \:  \:  \implies \dfrac{1}{ {3}^{2} }

\sf\:  \:  \:  \:  \:  \:  \:  \:  \:  \implies \dfrac{1}{ 9 }\\

Method 2

\\  \sf\:  \:  \:  \:  \:  \:  \:  \:  \:  \implies4\sqrt{(81)}^{-2}

  \sf\:  \:  \:  \:  \:  \:  \:  \:  \:  \implies( {3}^{4} )^{-2 \times  \frac{1}{4}}

  \sf\:  \:  \:  \:  \:  \:  \:  \:  \:  \implies( {3} )^{ 4\times  \frac{ - 1}{2}}

  \sf\:  \:  \:  \:  \:  \:  \:  \:  \:  \implies {3}^{ - 2}

  \bf\:  \:  \:  \:  \:  \:  \:  \:  \:  \implies  \dfrac{1}{9}  \\  \\  \\

  • \tiny\begin{gathered}\begin{gathered}\\\\\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered} \bigstar \: \underline{\bf{}}\\ {\boxed{\begin{array}{c | c}  \frac{ \:  ~~~~~~~~~~\:  \:  \:  \:  \:\sf  Laws \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: }{ } &\frac{ \: ~~~~~~~~~~ \:  \:  \:  \:  \:\sf Example  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: }{ }\\ \sf \bigstar{a}^{m} \times {a}^{n} = {a}^{m + n} & \sf {a}^{2}  \times  {a}^{3} =  {a}^{2 + 3} =  {a}^{6}    \\ \\  \sf \bigstar{a}^{m} \div {a}^{n} = {a}^{m - n}& \sf {a}^{3} \div  {a}^{2}  =  {a}^{3 - 2} =  {a}^{1}     \\ \\ \sf{\bigstar \:  \:  \:  \:  \:  \: ( {a}^{m} ) ^{n} = {a}^{mn} } & \sf( {a}^{2} ) ^{3} = {a}^{2 \times 3} =  {a}^{6}  \\  \\  {\bigstar\sf a {}^{m} \times {n}^{m} = (ab) ^{m} } &\sf a {}^{2} \times {b}^{2} = (ab) ^{2}\\  \\  \sf\bigstar  \:  \:  \:  \:  \: {a}^{0} = 1& \sf {2}^{0} = 1 \:  \:  \:  \:    \\  \\  \sf \bigstar  \:  \:  \: \: {\dfrac{ {a}^{m} }{ {b}^{m} }= \left( \dfrac{a}{b} \right) ^{m} }&  \sf{\dfrac{ {a}^{2} }{ {b}^{2} }=  \left( \dfrac{a}{b} \right) ^{2} }\\\\\bigstar~~~~~~~ \sf x^{\frac{m}{n} }=\sqrt[n]{x^m}\sf   = (\sqrt[n]{x})^m  & \sf x^{\frac{2}{3} }=\sqrt[3]{x^2} = (\sqrt[n]{x})^m\\   \\\\ \end{array}}}\end{gathered}\end{gathered}\end{gathered}\end{gathered}\end{gathered}\end{gathered}
Answered by madukasundi157
12

Answer:

See the attachment photos.

= 1/9.

Don't forget to thanks

Mark as brainlist.

Attachments:
Similar questions