Math, asked by varun4584, 1 year ago

find the value of 4 tan 45 + 3 Cos 60 + 3 sin square 60 + tan30 cot 45​

Answers

Answered by dussavamsikrishna
8

Answe

Step-by-step explanation:see below photo for answer. Give it the brainiest answer please

Attachments:
Answered by pinquancaro
7

4\tan 45+3\cos 60+3\sin^2 60+\tan 30\cot 45=\frac{30\sqrt{3}+4}{4\sqrt3}

Step-by-step explanation:

Given : Expression 4\tan 45+3\cos 60+3\sin^2 60+\tan 30\cot 45

To find : The value of expression ?

Solution :

Expression 4\tan 45+3\cos 60+3\sin^2 60+\tan 30\cot 45

Using trigonometric values,

\sin 60=\frac{\sqrt3}{2}

\cos 60=\frac{1}{2}

\tan 30=\frac{1}{\sqrt3}

\tan 45=1

\cot 45=1

Substitute the values,

=4(1)+3(\frac{1}{2})+3(\frac{\sqrt3}{2})^2+(\frac{1}{\sqrt3})(1)

=4+\frac{3}{2}+\frac{9}{4}+\frac{1}{\sqrt3}

=\frac{15\sqrt{3}+6\sqrt{3}+9\sqrt{3}+4}{4\sqrt3}

=\frac{30\sqrt{3}+4}{4\sqrt3}

Therefore, 4\tan 45+3\cos 60+3\sin^2 60+\tan 30\cot 45=\frac{30\sqrt{3}+4}{4\sqrt3}

#Learn more

sin 30 cos 30 + cos 30 sin 60 = sin 90​

https://brainly.in/question/9233350

Similar questions