Math, asked by ashwin2146, 1 year ago

find the value of 4th root of √64^-2​

Answers

Answered by AccioNerd
153

Answer:

1/√8

Step-by-step explanation:

4th root of √64^-2​ = (√64)^-(2/4)

                               = 64^(-2/(4 x 2))

                               = 64^(-2/8)

                               = 1/64^(1/4)

64 = 2^6

∴ 1/64^(1/4) = 1/2^(6/4)

                  = 1/2^(3/2)

                  = 1/√8

Hope this helps! :)

Answered by AnkitaSahni
18

Given:

(\frac{1}{{64} }

To find:

The fourth root of the given number

Solution:

  • The "root of a number x is a number which when multiplied with itself, equals x".
  • The fourth root of a number x means finding \sqrt[4]{x}.
  • For finding the solution, we will follow these steps:

1. Simplify the given number

  • The number given to us is:

                               ( \frac{1}{{64} }

                          ⇒ \frac{1}{4096}

                                   

2. Find its 4th root.

                            \sqrt[4]{\frac{1}{4096} }

                           ⇒\frac{1}{4096} ^{1/4}

  • 4096 can be expressed as the square of 64.
  • 64 can be expressed as the square of 8.

                    4096 = (64)² = [(8)²]² = (8)⁴

  • Thus, we get:

                                       \frac{1}{8^{4} } ^{1/4}

  • The powers get multiplied and cancel each other out.

                                   ⇒  \frac{1}{8}                                    (1ⁿ = 1)

Therefore, the 4th root of (\frac{1}{64})² is \frac{1}{8}.

Similar questions