Math, asked by sheriyariya126, 7 months ago

find the value of (√5+√2)²
  \sqrt{5}  +  \sqrt{2}²

Answers

Answered by viperisbackagain
0

 \huge \mathbb \red {ANSWER}

by using

property \</strong><strong>c</strong><strong>o</strong><strong>l</strong><strong>o</strong><strong>r</strong><strong>{</strong><strong>brown</strong><strong>}</strong><strong>\</strong><strong>b</strong><strong>o</strong><strong>x</strong><strong>e</strong><strong>d</strong><strong>{a + b}^{2}</strong></p><p></p><p></p><p><strong> \: we \: get  \:   \\  \ ({ \sqrt{5} +  \sqrt{2}  )}^{2}   \\  \\  ({ \sqrt{5} +  \sqrt{2} ) }^{2}  =    { \sqrt{5} }^{2}  +  { \sqrt{2} }^{2}  + 2 ({ \sqrt{2} })^{}( \sqrt{5)}   \\  \\ 5 + 2 + 2 \sqrt{10}  \\  \\ 7 + 2 \sqrt{10}

 \huge \green {explantion}

  • 1st we apply a+ identity

  • as we know a + = + +2ab

  • by using this property we get answer as 7 + 210

hope it helps you

be brainly

Similar questions