Math, asked by sameertagala83, 11 months ago

find the value of 5√(243) power -3​

Answers

Answered by pinquancaro
36

The value of the expression is  \sqrt[5]{(243)^{-3}}=\frac{1}{27}.

Step-by-step explanation:

Given : Expression \sqrt[5]{(243)^{-3}}

To find : The value of the expression ?

Solution :

We know that, 3^5=243

Re-write the expression as,

\sqrt[5]{(243)^{-3}}=((243)^{-3})^{\frac{1}{5}}\\\\\sqrt[5]{(243)^{-3}}=(243)^{\frac{-3}{5}}\\\\\sqrt[5]{(243)^{-3}}=(3^5)^{\frac{-3}{5}}\\\\\sqrt[5]{(243)^{-3}}=(3)^{\frac{-3\times 5}{5}}\\\\\sqrt[5]{(243)^{-3}}=(3)^{-3}\\\\\sqrt[5]{(243)^{-3}}=\frac{1}{3^3}\\\\\sqrt[5]{(243)^{-3}}=\frac{1}{27}\\\\

Therefore, the value of the expression is  \sqrt[5]{(243)^{-3}}=\frac{1}{27}.

#Learn more

Find the value of 243 raised to the power 3/5

https://brainly.in/question/4924196

Answered by rakeshsurbhi11
8

Hope this helps you.....

Attachments:
Similar questions