Math, asked by radaoamabtb, 11 hours ago

Find the value of 54250−−−√3 (a) 925 (b) 35 (c) 27125 (d) 2√35​

Answers

Answered by pulakmath007
4

\displaystyle \sf{   \sqrt[3]{ \frac{54}{250} }  =  \frac{3}{5} }

Given : \displaystyle \sf{   \sqrt[3]{ \frac{54}{250} }  }

To find : The value is

\displaystyle \sf{   (A) \:  \:   \frac{9}{25} }

\displaystyle \sf{   (B) \:  \:   \frac{3}{5} }

\displaystyle \sf{   (C) \:  \:   \frac{27}{125} }

\displaystyle \sf{   (D) \:  \:   \frac{ \sqrt[3]{2} }{5} }

Solution :

Here the given expression is

\displaystyle \sf{   \sqrt[3]{ \frac{54}{250} }  }

We simplify it as below

\displaystyle \sf{   \sqrt[3]{ \frac{54}{250} }  }

\displaystyle \sf{ =    \sqrt[3]{ \frac{2  \times 3 \times 3 \times 3}{5 \times 5 \times 5 \times 2} }  }

\displaystyle \sf{ =    \sqrt[3]{ \frac{ 3 \times 3 \times 3}{5 \times 5 \times 5 } }  }

\displaystyle \sf{ =    \sqrt[3]{ \frac{  {3}^{3} }{ {5}^{3}  } }  }

\displaystyle \sf{ =    \frac{3}{5}  }

Hence the correct option is \displaystyle \sf{   (B) \:  \:   \frac{3}{5} }

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. choose the correct alternative : 100¹⁰⁰ is equal to (a) 2¹⁰⁰ × 50¹⁰⁰ (b) 2¹⁰⁰ + 50¹⁰⁰ (c) 2² × 50⁵⁰ (d) 2² + 50⁵⁰

https://brainly.in/question/47883149

2. Using law of exponents, simplify (5²)³÷5³

https://brainly.in/question/36250730

Similar questions