Math, asked by pranzalrimal46, 1 month ago

find the value of
√(6-2√5)

Answers

Answered by Rameshjangid
0

Answer:

\sqrt{5}-1

Step-by-step explanation:

Step 1: $$\sqrt{6-2 \sqrt{5}}$$

Apply rule: (a)=a

$$\begin{aligned}& (6-2 \sqrt{5})=6-2 \sqrt{5} \\& =\sqrt{6-2 \sqrt{5}} \\& =\sqrt{5-2 \sqrt{5}+1} \\& =\sqrt{1 \cdot 5-2 \sqrt{5}+1} \\& =\sqrt{(\sqrt{1})^2(\sqrt{5})^2-2 \sqrt{5}+(\sqrt{1})^2}\end{aligned}$$

$$\begin{aligned}& \sqrt{1}=1 \\& =\sqrt{1^2(\sqrt{5})^2-2 \sqrt{5}+1^2}\end{aligned}$$

$$\begin{aligned}& 2 \cdot 1 \cdot 1 \cdot \sqrt{5}=2 \sqrt{5} \\& =\sqrt{1^2(\sqrt{5})^2-2 \cdot 1 \cdot 1 \cdot \sqrt{5}+1^2}\end{aligned}$$

Step 2: To remove quantities from radical expressions, apply the condition n√xn=x x n n = x if n is odd and n√xn=|x| x n n = | x | if n is even. To simplify radical equations, seek for exponential factors within the radical. When simplifying radical formulas, all exponentiation and integer operation rules apply.

Apply Perfect Square Formula:$(a-b)^2=a^2-2 a b+b^2$

$$1^2(\sqrt{5})^2-2 \cdot 1 \cdot 1 \cdot \sqrt{5}+1^2=(1 \cdot \sqrt{5}-1)^2$$

$$=\sqrt{(1 \cdot \sqrt{5}-1)^2}$$

Apply radical rule: $\quad \sqrt[n]{a^n}=a$

$$\begin{aligned}& \sqrt{(1 \cdot \sqrt{5}-1)^2}=1 \cdot \sqrt{5}-1 \\& =1 \cdot \sqrt{5}-1\end{aligned}$$

Apply rule: $1 \cdot a=a$

$$\begin{aligned}& 1 \cdot \sqrt{5}=\sqrt{5} \\& =\sqrt{5}-1\end{aligned}$$

Learn more about similar questions visit:

https://brainly.in/question/7763690?referrer=searchResults

https://brainly.in/question/20478419?referrer=searchResults

#SPJ1

Similar questions