Math, asked by alokpandey34001, 1 year ago

Find the value of:
(6.4)² – (5.4)^2 / (8.9)^2+(8.9) (2.2)+(1.1)^2​

Answers

Answered by praneethks
38

Step-by-step explanation:

 \frac{ {6.4}^{2} -  {5.4}^{2} }{ {8.9}^{2} + (8.9)(2.2) +  {1.1}^{2}} =  >  \frac{(6.4 + 5.4)(6.4 - 5.4)}{ {(8.9 + 1.1)}^{2} }

 {(x + y)}^{2} =  {x}^{2} +  {y}^{2} + 2xy

 =  >  \frac{11.8 \times 1}{100}  =  > 0.118

Hope it helps you.

Answered by pinquancaro
39

\frac{(6.4)^2-(5.4)^2}{(8.9)^2+(8.9) (2.2)+(1.1)^2}=0.118

Step-by-step explanation:

Given : Expression \frac{(6.4)^2-(5.4)^2}{(8.9)^2+(8.9) (2.2)+(1.1)^2}

To find : The value of expression ?

Solution :

Re-write expression as,

=\frac{(6.4)^2-(5.4)^2}{(8.9)^2+2(8.9) (1.1)+(1.1)^2}

Applying algebraic identity,

a^2-b^2=(a+b)(a-b)\\(a+b)^2=a^2+b^2+2ab

=\frac{(6.4+5.4)(6.4-5.4)}{(8.9+1.1)^2}

=\frac{(11.8)(1)}{(10)^2}

=\frac{11.8}{100}

=0.118

Therefore, the value of the expression is \frac{(6.4)^2-(5.4)^2}{(8.9)^2+(8.9) (2.2)+(1.1)^2}=0.118.

#Learn more

8.5 - (4.07 -1.2 - 0.9) of 1.6​

https://brainly.in/question/13107185

Similar questions