Math, asked by me0ganeswath, 1 year ago

Find the value of 6 / root 5 + root 3 ,if root 3 =1.732 and root 5 = 2.236.

Answers

Answered by mysticd
27
go through the solution given above
Attachments:
Answered by mindfulmaisel
63

The \quad value \quad of \quad \frac{6}{\sqrt{5}+\sqrt{3}} =1.512

Given:

\frac{6}{\sqrt{5}+\sqrt{3}}

\sqrt{3}=1.732

\sqrt{5}=2.236

To find:

The value of \frac{6}{\sqrt{5}+\sqrt{3}}

Answer:

\frac{6}{\sqrt{5}+\sqrt{3}}

By taking conjugate on both side we get,

=\frac { 6 }{ \sqrt { 5 } +\sqrt { 3 } } \quad \times \quad \frac { \sqrt { 5 } -\sqrt { 3 } }{ \sqrt { 5 } -\sqrt { 3 } }

=\frac{6(\sqrt{5}-\sqrt{3})}{(\sqrt{5})^{2}-(\sqrt{3})^{2}}

=\frac{6(\sqrt{5}-\sqrt{3})}{5-3}

=\frac{6(\sqrt{5}-\sqrt{3})}{2}

By cancel the numerator and denominator we get

=3(\sqrt{5}-\sqrt{3})

Apply the value of \sqrt{5} \ and \ \sqrt{3} on the above equation.

= 3(2.236-1.732)

= 3(0.504)

\frac{6}{\sqrt{5}+\sqrt{3}} = 1.512

Similar questions