find the value of 60t permin on a a system that has 100gm 100cm and 1 minute as the base unit
the density of mercury is 30.6g/cmcube in cgs system find its value in s.i unit and convert 1 dyne into Newtown
Answers
Answer:
The fundamental units according to given question, the system is given with 100 g, 100 cm and 1 minutes. Unit conversion is required.
Thereby, 60 Joules per minute = n units
\frac{60 \text { joules }}{\text { minutes }}=\mathrm{n}
minutes
60 joules
=n
\frac{60 \text { joules }}{60 \text { seconds }}=\mathrm{n}
60 seconds
60 joules
=n
\frac{1 \text { joules }}{\text { second }}=\mathrm{n}
second
1 joules
=n
\frac{1 \text { joules }}{\text { second }}=1 \mathrm{kg} \mathrm{m}^{2} \text { sec }^{-3}
second
1 joules
=1kgm
2
sec
−3
1 \mathrm{kg} \mathrm{m}^{2} \sec ^{-1}=\mathrm{n}(100 \mathrm{g})(100 \mathrm{cm})^{2}(1 \mathrm{min})^{-3}1kgm
2
sec
−1
=n(100g)(100cm)
2
(1min)
−3
1\left(\frac{1 \mathrm{kg}}{100 \mathrm{g}}\right)\left(\frac{1 \mathrm{m}}{100 \mathrm{cm}}\right)^{2}\left(\frac{1 \mathrm{sec}}{1 \mathrm{min}}\right)^{-3}=\mathrm{n}1(
100g
1kg
)(
100cm
1m
)
2
(
1min
1sec
)
−3
=n
1\left(\frac{1000 \mathrm{g}}{100 \mathrm{g}}\right)\left(\frac{100 \mathrm{cm}}{100 \mathrm{cm}}\right)^{2}\left(\frac{1 \mathrm{sec}}{60 \mathrm{sec}}\right)^{-3}=\mathrm{n}1(
100g
1000g
)(
100cm
100cm
)
2
(
60sec
1sec
)
−3
=n
1(10 \mathrm{g})\left(\frac{1 \mathrm{sec}}{60 \mathrm{sec}}\right)^{-3}=\mathrm{n}1(10g)(
60sec
1sec
)
−3
=n
1(10 \mathrm{g})(60 \mathrm{sec})^{3}=\mathrm{n}1(10g)(60sec)
3
=n
10 \times 216000=\mathrm{n}10×216000=n
2.16 \times 10^{6}=\mathrm{n}2.16×10
6
=n
\frac{60 \text { joules }}{\min }=2.16 \times 10^{6} \ \text{in new unit}
min
60 joules
=2.16×10
6
in new unit