Physics, asked by abhishekdietme317, 2 months ago

find the value of 60t permin on a a system that has 100gm 100cm and 1 minute as the base unit
the density of mercury is 30.6g/cmcube in cgs system find its value in s.i unit and convert 1 dyne into Newtown

Answers

Answered by abiramibalan2006
2

Answer:

The fundamental units according to given question, the system is given with 100 g, 100 cm and 1 minutes. Unit conversion is required.

Thereby, 60 Joules per minute = n units

\frac{60 \text { joules }}{\text { minutes }}=\mathrm{n}

minutes

60 joules

=n

\frac{60 \text { joules }}{60 \text { seconds }}=\mathrm{n}

60 seconds

60 joules

=n

\frac{1 \text { joules }}{\text { second }}=\mathrm{n}

second

1 joules

=n

\frac{1 \text { joules }}{\text { second }}=1 \mathrm{kg} \mathrm{m}^{2} \text { sec }^{-3}

second

1 joules

=1kgm

2

sec

−3

1 \mathrm{kg} \mathrm{m}^{2} \sec ^{-1}=\mathrm{n}(100 \mathrm{g})(100 \mathrm{cm})^{2}(1 \mathrm{min})^{-3}1kgm

2

sec

−1

=n(100g)(100cm)

2

(1min)

−3

1\left(\frac{1 \mathrm{kg}}{100 \mathrm{g}}\right)\left(\frac{1 \mathrm{m}}{100 \mathrm{cm}}\right)^{2}\left(\frac{1 \mathrm{sec}}{1 \mathrm{min}}\right)^{-3}=\mathrm{n}1(

100g

1kg

)(

100cm

1m

)

2

(

1min

1sec

)

−3

=n

1\left(\frac{1000 \mathrm{g}}{100 \mathrm{g}}\right)\left(\frac{100 \mathrm{cm}}{100 \mathrm{cm}}\right)^{2}\left(\frac{1 \mathrm{sec}}{60 \mathrm{sec}}\right)^{-3}=\mathrm{n}1(

100g

1000g

)(

100cm

100cm

)

2

(

60sec

1sec

)

−3

=n

1(10 \mathrm{g})\left(\frac{1 \mathrm{sec}}{60 \mathrm{sec}}\right)^{-3}=\mathrm{n}1(10g)(

60sec

1sec

)

−3

=n

1(10 \mathrm{g})(60 \mathrm{sec})^{3}=\mathrm{n}1(10g)(60sec)

3

=n

10 \times 216000=\mathrm{n}10×216000=n

2.16 \times 10^{6}=\mathrm{n}2.16×10

6

=n

\frac{60 \text { joules }}{\min }=2.16 \times 10^{6} \ \text{in new unit}

min

60 joules

=2.16×10

6

in new unit

Similar questions